# Cookbook
This is a repository for short and sweet examples and links for useful pandas recipes. We encourage users to add to this documentation.
Adding interesting links and/or inline examples to this section is a great First Pull Request.
Simplified, condensed, new-user friendly, in-line examples have been inserted where possible to augment the Stack-Overflow and GitHub links. Many of the links contain expanded information, above what the in-line examples offer.
Pandas (pd) and Numpy (np) are the only two abbreviated imported modules. The rest are kept explicitly imported for newer users.
These examples are written for Python 3. Minor tweaks might be necessary for earlier python versions.
# Idioms
These are some neat pandas idioms
In [1]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
...: 'BBB': [10, 20, 30, 40],
...: 'CCC': [100, 50, -30, -50]})
...:
In [2]: df
Out[2]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
# if-then…
An if-then on one column
In [3]: df.loc[df.AAA >= 5, 'BBB'] = -1
In [4]: df
Out[4]:
AAA BBB CCC
0 4 10 100
1 5 -1 50
2 6 -1 -30
3 7 -1 -50
An if-then with assignment to 2 columns:
In [5]: df.loc[df.AAA >= 5, ['BBB', 'CCC']] = 555
In [6]: df
Out[6]:
AAA BBB CCC
0 4 10 100
1 5 555 555
2 6 555 555
3 7 555 555
Add another line with different logic, to do the -else
In [7]: df.loc[df.AAA < 5, ['BBB', 'CCC']] = 2000
In [8]: df
Out[8]:
AAA BBB CCC
0 4 2000 2000
1 5 555 555
2 6 555 555
3 7 555 555
Or use pandas where after you’ve set up a mask
In [9]: df_mask = pd.DataFrame({'AAA': [True] * 4,
...: 'BBB': [False] * 4,
...: 'CCC': [True, False] * 2})
...:
In [10]: df.where(df_mask, -1000)
Out[10]:
AAA BBB CCC
0 4 -1000 2000
1 5 -1000 -1000
2 6 -1000 555
3 7 -1000 -1000
if-then-else using numpy’s where() (opens new window)
In [11]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [12]: df
Out[12]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [13]: df['logic'] = np.where(df['AAA'] > 5, 'high', 'low')
In [14]: df
Out[14]:
AAA BBB CCC logic
0 4 10 100 low
1 5 20 50 low
2 6 30 -30 high
3 7 40 -50 high
# Splitting
Split a frame with a boolean criterion (opens new window)
In [15]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [16]: df
Out[16]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [17]: df[df.AAA <= 5]
Out[17]:
AAA BBB CCC
0 4 10 100
1 5 20 50
In [18]: df[df.AAA > 5]
Out[18]:
AAA BBB CCC
2 6 30 -30
3 7 40 -50
# Building criteria
Select with multi-column criteria (opens new window)
In [19]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [20]: df
Out[20]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
…and (without assignment returns a Series)
In [21]: df.loc[(df['BBB'] < 25) & (df['CCC'] >= -40), 'AAA']
Out[21]:
0 4
1 5
Name: AAA, dtype: int64
…or (without assignment returns a Series)
In [22]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= -40), 'AAA']
Out[22]:
0 4
1 5
2 6
3 7
Name: AAA, dtype: int64
…or (with assignment modifies the DataFrame.)
In [23]: df.loc[(df['BBB'] > 25) | (df['CCC'] >= 75), 'AAA'] = 0.1
In [24]: df
Out[24]:
AAA BBB CCC
0 0.1 10 100
1 5.0 20 50
2 0.1 30 -30
3 0.1 40 -50
Select rows with data closest to certain value using argsort (opens new window)
In [25]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [26]: df
Out[26]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [27]: aValue = 43.0
In [28]: df.loc[(df.CCC - aValue).abs().argsort()]
Out[28]:
AAA BBB CCC
1 5 20 50
0 4 10 100
2 6 30 -30
3 7 40 -50
Dynamically reduce a list of criteria using a binary operators (opens new window)
In [29]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [30]: df
Out[30]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [31]: Crit1 = df.AAA <= 5.5
In [32]: Crit2 = df.BBB == 10.0
In [33]: Crit3 = df.CCC > -40.0
One could hard code:
In [34]: AllCrit = Crit1 & Crit2 & Crit3
…Or it can be done with a list of dynamically built criteria
In [35]: import functools
In [36]: CritList = [Crit1, Crit2, Crit3]
In [37]: AllCrit = functools.reduce(lambda x, y: x & y, CritList)
In [38]: df[AllCrit]
Out[38]:
AAA BBB CCC
0 4 10 100
# Selection
# DataFrames
The indexing docs.
Using both row labels and value conditionals (opens new window)
In [39]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [40]: df
Out[40]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [41]: df[(df.AAA <= 6) & (df.index.isin([0, 2, 4]))]
Out[41]:
AAA BBB CCC
0 4 10 100
2 6 30 -30
Use loc for label-oriented slicing and iloc positional slicing (opens new window)
In [42]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]},
....: index=['foo', 'bar', 'boo', 'kar'])
....:
There are 2 explicit slicing methods, with a third general case
- Positional-oriented (Python slicing style : exclusive of end)
- Label-oriented (Non-Python slicing style : inclusive of end)
- General (Either slicing style : depends on if the slice contains labels or positions)
In [43]: df.loc['bar':'kar'] # Label
Out[43]:
AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50
# Generic
In [44]: df.iloc[0:3]
Out[44]:
AAA BBB CCC
foo 4 10 100
bar 5 20 50
boo 6 30 -30
In [45]: df.loc['bar':'kar']
Out[45]:
AAA BBB CCC
bar 5 20 50
boo 6 30 -30
kar 7 40 -50
Ambiguity arises when an index consists of integers with a non-zero start or non-unit increment.
In [46]: data = {'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]}
....:
In [47]: df2 = pd.DataFrame(data=data, index=[1, 2, 3, 4]) # Note index starts at 1.
In [48]: df2.iloc[1:3] # Position-oriented
Out[48]:
AAA BBB CCC
2 5 20 50
3 6 30 -30
In [49]: df2.loc[1:3] # Label-oriented
Out[49]:
AAA BBB CCC
1 4 10 100
2 5 20 50
3 6 30 -30
Using inverse operator (~) to take the complement of a mask (opens new window)
In [50]: df = pd.DataFrame({'AAA': [4, 5, 6, 7],
....: 'BBB': [10, 20, 30, 40],
....: 'CCC': [100, 50, -30, -50]})
....:
In [51]: df
Out[51]:
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6 30 -30
3 7 40 -50
In [52]: df[~((df.AAA <= 6) & (df.index.isin([0, 2, 4])))]
Out[52]:
AAA BBB CCC
1 5 20 50
3 7 40 -50
# New columns
Efficiently and dynamically creating new columns using applymap (opens new window)
In [53]: df = pd.DataFrame({'AAA': [1, 2, 1, 3],
....: 'BBB': [1, 1, 2, 2],
....: 'CCC': [2, 1, 3, 1]})
....:
In [54]: df
Out[54]:
AAA BBB CCC
0 1 1 2
1 2 1 1
2 1 2 3
3 3 2 1
In [55]: source_cols = df.columns # Or some subset would work too
In [56]: new_cols = [str(x) + "_cat" for x in source_cols]
In [57]: categories = {1: 'Alpha', 2: 'Beta', 3: 'Charlie'}
In [58]: df[new_cols] = df[source_cols].applymap(categories.get)
In [59]: df
Out[59]:
AAA BBB CCC AAA_cat BBB_cat CCC_cat
0 1 1 2 Alpha Alpha Beta
1 2 1 1 Beta Alpha Alpha
2 1 2 3 Alpha Beta Charlie
3 3 2 1 Charlie Beta Alpha
Keep other columns when using min() with groupby (opens new window)
In [60]: df = pd.DataFrame({'AAA': [1, 1, 1, 2, 2, 2, 3, 3],
....: 'BBB': [2, 1, 3, 4, 5, 1, 2, 3]})
....:
In [61]: df
Out[61]:
AAA BBB
0 1 2
1 1 1
2 1 3
3 2 4
4 2 5
5 2 1
6 3 2
7 3 3
Method 1 : idxmin() to get the index of the minimums
In [62]: df.loc[df.groupby("AAA")["BBB"].idxmin()]
Out[62]:
AAA BBB
1 1 1
5 2 1
6 3 2
Method 2 : sort then take first of each
In [63]: df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
Out[63]:
AAA BBB
0 1 1
1 2 1
2 3 2
Notice the same results, with the exception of the index.
# MultiIndexing
The multindexing docs.
Creating a MultiIndex from a labeled frame (opens new window)
In [64]: df = pd.DataFrame({'row': [0, 1, 2],
....: 'One_X': [1.1, 1.1, 1.1],
....: 'One_Y': [1.2, 1.2, 1.2],
....: 'Two_X': [1.11, 1.11, 1.11],
....: 'Two_Y': [1.22, 1.22, 1.22]})
....:
In [65]: df
Out[65]:
row One_X One_Y Two_X Two_Y
0 0 1.1 1.2 1.11 1.22
1 1 1.1 1.2 1.11 1.22
2 2 1.1 1.2 1.11 1.22
# As Labelled Index
In [66]: df = df.set_index('row')
In [67]: df
Out[67]:
One_X One_Y Two_X Two_Y
row
0 1.1 1.2 1.11 1.22
1 1.1 1.2 1.11 1.22
2 1.1 1.2 1.11 1.22
# With Hierarchical Columns
In [68]: df.columns = pd.MultiIndex.from_tuples([tuple(c.split('_'))
....: for c in df.columns])
....:
In [69]: df
Out[69]:
One Two
X Y X Y
row
0 1.1 1.2 1.11 1.22
1 1.1 1.2 1.11 1.22
2 1.1 1.2 1.11 1.22
# Now stack & Reset
In [70]: df = df.stack(0).reset_index(1)
In [71]: df
Out[71]:
level_1 X Y
row
0 One 1.10 1.20
0 Two 1.11 1.22
1 One 1.10 1.20
1 Two 1.11 1.22
2 One 1.10 1.20
2 Two 1.11 1.22
# And fix the labels (Notice the label 'level_1' got added automatically)
In [72]: df.columns = ['Sample', 'All_X', 'All_Y']
In [73]: df
Out[73]:
Sample All_X All_Y
row
0 One 1.10 1.20
0 Two 1.11 1.22
1 One 1.10 1.20
1 Two 1.11 1.22
2 One 1.10 1.20
2 Two 1.11 1.22
# Arithmetic
Performing arithmetic with a MultiIndex that needs broadcasting (opens new window)
In [74]: cols = pd.MultiIndex.from_tuples([(x, y) for x in ['A', 'B', 'C']
....: for y in ['O', 'I']])
....:
In [75]: df = pd.DataFrame(np.random.randn(2, 6), index=['n', 'm'], columns=cols)
In [76]: df
Out[76]:
A B C
O I O I O I
n 0.469112 -0.282863 -1.509059 -1.135632 1.212112 -0.173215
m 0.119209 -1.044236 -0.861849 -2.104569 -0.494929 1.071804
In [77]: df = df.div(df['C'], level=1)
In [78]: df
Out[78]:
A B C
O I O I O I
n 0.387021 1.633022 -1.244983 6.556214 1.0 1.0
m -0.240860 -0.974279 1.741358 -1.963577 1.0 1.0
# Slicing
Slicing a MultiIndex with xs (opens new window)
In [79]: coords = [('AA', 'one'), ('AA', 'six'), ('BB', 'one'), ('BB', 'two'),
....: ('BB', 'six')]
....:
In [80]: index = pd.MultiIndex.from_tuples(coords)
In [81]: df = pd.DataFrame([11, 22, 33, 44, 55], index, ['MyData'])
In [82]: df
Out[82]:
MyData
AA one 11
six 22
BB one 33
two 44
six 55
To take the cross section of the 1st level and 1st axis the index:
# Note : level and axis are optional, and default to zero
In [83]: df.xs('BB', level=0, axis=0)
Out[83]:
MyData
one 33
two 44
six 55
…and now the 2nd level of the 1st axis.
In [84]: df.xs('six', level=1, axis=0)
Out[84]:
MyData
AA 22
BB 55
Slicing a MultiIndex with xs, method #2 (opens new window)
In [85]: import itertools
In [86]: index = list(itertools.product(['Ada', 'Quinn', 'Violet'],
....: ['Comp', 'Math', 'Sci']))
....:
In [87]: headr = list(itertools.product(['Exams', 'Labs'], ['I', 'II']))
In [88]: indx = pd.MultiIndex.from_tuples(index, names=['Student', 'Course'])
In [89]: cols = pd.MultiIndex.from_tuples(headr) # Notice these are un-named
In [90]: data = [[70 + x + y + (x * y) % 3 for x in range(4)] for y in range(9)]
In [91]: df = pd.DataFrame(data, indx, cols)
In [92]: df
Out[92]:
Exams Labs
I II I II
Student Course
Ada Comp 70 71 72 73
Math 71 73 75 74
Sci 72 75 75 75
Quinn Comp 73 74 75 76
Math 74 76 78 77
Sci 75 78 78 78
Violet Comp 76 77 78 79
Math 77 79 81 80
Sci 78 81 81 81
In [93]: All = slice(None)
In [94]: df.loc['Violet']
Out[94]:
Exams Labs
I II I II
Course
Comp 76 77 78 79
Math 77 79 81 80
Sci 78 81 81 81
In [95]: df.loc[(All, 'Math'), All]
Out[95]:
Exams Labs
I II I II
Student Course
Ada Math 71 73 75 74
Quinn Math 74 76 78 77
Violet Math 77 79 81 80
In [96]: df.loc[(slice('Ada', 'Quinn'), 'Math'), All]
Out[96]:
Exams Labs
I II I II
Student Course
Ada Math 71 73 75 74
Quinn Math 74 76 78 77
In [97]: df.loc[(All, 'Math'), ('Exams')]
Out[97]:
I II
Student Course
Ada Math 71 73
Quinn Math 74 76
Violet Math 77 79
In [98]: df.loc[(All, 'Math'), (All, 'II')]
Out[98]:
Exams Labs
II II
Student Course
Ada Math 73 74
Quinn Math 76 77
Violet Math 79 80
Setting portions of a MultiIndex with xs (opens new window)
# Sorting
Sort by specific column or an ordered list of columns, with a MultiIndex (opens new window)
In [99]: df.sort_values(by=('Labs', 'II'), ascending=False)
Out[99]:
Exams Labs
I II I II
Student Course
Violet Sci 78 81 81 81
Math 77 79 81 80
Comp 76 77 78 79
Quinn Sci 75 78 78 78
Math 74 76 78 77
Comp 73 74 75 76
Ada Sci 72 75 75 75
Math 71 73 75 74
Comp 70 71 72 73
Partial selection, the need for sortedness; (opens new window)
# Levels
Prepending a level to a multiindex (opens new window)
Flatten Hierarchical columns (opens new window)
# Missing data
The missing data docs.
Fill forward a reversed timeseries
In [100]: df = pd.DataFrame(np.random.randn(6, 1),
.....: index=pd.date_range('2013-08-01', periods=6, freq='B'),
.....: columns=list('A'))
.....:
In [101]: df.loc[df.index[3], 'A'] = np.nan
In [102]: df
Out[102]:
A
2013-08-01 0.721555
2013-08-02 -0.706771
2013-08-05 -1.039575
2013-08-06 NaN
2013-08-07 -0.424972
2013-08-08 0.567020
In [103]: df.reindex(df.index[::-1]).ffill()
Out[103]:
A
2013-08-08 0.567020
2013-08-07 -0.424972
2013-08-06 -0.424972
2013-08-05 -1.039575
2013-08-02 -0.706771
2013-08-01 0.721555
cumsum reset at NaN values (opens new window)
# Replace
Using replace with backrefs (opens new window)
# Grouping
The grouping docs.
Basic grouping with apply (opens new window)
Unlike agg, apply’s callable is passed a sub-DataFrame which gives you access to all the columns
In [104]: df = pd.DataFrame({'animal': 'cat dog cat fish dog cat cat'.split(),
.....: 'size': list('SSMMMLL'),
.....: 'weight': [8, 10, 11, 1, 20, 12, 12],
.....: 'adult': [False] * 5 + [True] * 2})
.....:
In [105]: df
Out[105]:
animal size weight adult
0 cat S 8 False
1 dog S 10 False
2 cat M 11 False
3 fish M 1 False
4 dog M 20 False
5 cat L 12 True
6 cat L 12 True
# List the size of the animals with the highest weight.
In [106]: df.groupby('animal').apply(lambda subf: subf['size'][subf['weight'].idxmax()])
Out[106]:
animal
cat L
dog M
fish M
dtype: object
Using get_group (opens new window)
In [107]: gb = df.groupby(['animal'])
In [108]: gb.get_group('cat')
Out[108]:
animal size weight adult
0 cat S 8 False
2 cat M 11 False
5 cat L 12 True
6 cat L 12 True
Apply to different items in a group (opens new window)
In [109]: def GrowUp(x):
.....: avg_weight = sum(x[x['size'] == 'S'].weight * 1.5)
.....: avg_weight += sum(x[x['size'] == 'M'].weight * 1.25)
.....: avg_weight += sum(x[x['size'] == 'L'].weight)
.....: avg_weight /= len(x)
.....: return pd.Series(['L', avg_weight, True],
.....: index=['size', 'weight', 'adult'])
.....:
In [110]: expected_df = gb.apply(GrowUp)
In [111]: expected_df
Out[111]:
size weight adult
animal
cat L 12.4375 True
dog L 20.0000 True
fish L 1.2500 True
Expanding apply (opens new window)
In [112]: S = pd.Series([i / 100.0 for i in range(1, 11)])
In [113]: def cum_ret(x, y):
.....: return x * (1 + y)
.....:
In [114]: def red(x):
.....: return functools.reduce(cum_ret, x, 1.0)
.....:
In [115]: S.expanding().apply(red, raw=True)
Out[115]:
0 1.010000
1 1.030200
2 1.061106
3 1.103550
4 1.158728
5 1.228251
6 1.314229
7 1.419367
8 1.547110
9 1.701821
dtype: float64
Replacing some values with mean of the rest of a group (opens new window)
In [116]: df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [1, -1, 1, 2]})
In [117]: gb = df.groupby('A')
In [118]: def replace(g):
.....: mask = g < 0
.....: return g.where(mask, g[~mask].mean())
.....:
In [119]: gb.transform(replace)
Out[119]:
B
0 1.0
1 -1.0
2 1.5
3 1.5
Sort groups by aggregated data (opens new window)
In [120]: df = pd.DataFrame({'code': ['foo', 'bar', 'baz'] * 2,
.....: 'data': [0.16, -0.21, 0.33, 0.45, -0.59, 0.62],
.....: 'flag': [False, True] * 3})
.....:
In [121]: code_groups = df.groupby('code')
In [122]: agg_n_sort_order = code_groups[['data']].transform(sum).sort_values(by='data')
In [123]: sorted_df = df.loc[agg_n_sort_order.index]
In [124]: sorted_df
Out[124]:
code data flag
1 bar -0.21 True
4 bar -0.59 False
0 foo 0.16 False
3 foo 0.45 True
2 baz 0.33 False
5 baz 0.62 True
Create multiple aggregated columns (opens new window)
In [125]: rng = pd.date_range(start="2014-10-07", periods=10, freq='2min')
In [126]: ts = pd.Series(data=list(range(10)), index=rng)
In [127]: def MyCust(x):
.....: if len(x) > 2:
.....: return x[1] * 1.234
.....: return pd.NaT
.....:
In [128]: mhc = {'Mean': np.mean, 'Max': np.max, 'Custom': MyCust}
In [129]: ts.resample("5min").apply(mhc)
Out[129]:
Mean 2014-10-07 00:00:00 1
2014-10-07 00:05:00 3.5
2014-10-07 00:10:00 6
2014-10-07 00:15:00 8.5
Max 2014-10-07 00:00:00 2
2014-10-07 00:05:00 4
2014-10-07 00:10:00 7
2014-10-07 00:15:00 9
Custom 2014-10-07 00:00:00 1.234
2014-10-07 00:05:00 NaT
2014-10-07 00:10:00 7.404
2014-10-07 00:15:00 NaT
dtype: object
In [130]: ts
Out[130]:
2014-10-07 00:00:00 0
2014-10-07 00:02:00 1
2014-10-07 00:04:00 2
2014-10-07 00:06:00 3
2014-10-07 00:08:00 4
2014-10-07 00:10:00 5
2014-10-07 00:12:00 6
2014-10-07 00:14:00 7
2014-10-07 00:16:00 8
2014-10-07 00:18:00 9
Freq: 2T, dtype: int64
Create a value counts column and reassign back to the DataFrame (opens new window)
In [131]: df = pd.DataFrame({'Color': 'Red Red Red Blue'.split(),
.....: 'Value': [100, 150, 50, 50]})
.....:
In [132]: df
Out[132]:
Color Value
0 Red 100
1 Red 150
2 Red 50
3 Blue 50
In [133]: df['Counts'] = df.groupby(['Color']).transform(len)
In [134]: df
Out[134]:
Color Value Counts
0 Red 100 3
1 Red 150 3
2 Red 50 3
3 Blue 50 1
Shift groups of the values in a column based on the index (opens new window)
In [135]: df = pd.DataFrame({'line_race': [10, 10, 8, 10, 10, 8],
.....: 'beyer': [99, 102, 103, 103, 88, 100]},
.....: index=['Last Gunfighter', 'Last Gunfighter',
.....: 'Last Gunfighter', 'Paynter', 'Paynter',
.....: 'Paynter'])
.....:
In [136]: df
Out[136]:
line_race beyer
Last Gunfighter 10 99
Last Gunfighter 10 102
Last Gunfighter 8 103
Paynter 10 103
Paynter 10 88
Paynter 8 100
In [137]: df['beyer_shifted'] = df.groupby(level=0)['beyer'].shift(1)
In [138]: df
Out[138]:
line_race beyer beyer_shifted
Last Gunfighter 10 99 NaN
Last Gunfighter 10 102 99.0
Last Gunfighter 8 103 102.0
Paynter 10 103 NaN
Paynter 10 88 103.0
Paynter 8 100 88.0
Select row with maximum value from each group (opens new window)
In [139]: df = pd.DataFrame({'host': ['other', 'other', 'that', 'this', 'this'],
.....: 'service': ['mail', 'web', 'mail', 'mail', 'web'],
.....: 'no': [1, 2, 1, 2, 1]}).set_index(['host', 'service'])
.....:
In [140]: mask = df.groupby(level=0).agg('idxmax')
In [141]: df_count = df.loc[mask['no']].reset_index()
In [142]: df_count
Out[142]:
host service no
0 other web 2
1 that mail 1
2 this mail 2
Grouping like Python’s itertools.groupby (opens new window)
In [143]: df = pd.DataFrame([0, 1, 0, 1, 1, 1, 0, 1, 1], columns=['A'])
In [144]: df.A.groupby((df.A != df.A.shift()).cumsum()).groups
Out[144]:
{1: Int64Index([0], dtype='int64'),
2: Int64Index([1], dtype='int64'),
3: Int64Index([2], dtype='int64'),
4: Int64Index([3, 4, 5], dtype='int64'),
5: Int64Index([6], dtype='int64'),
6: Int64Index([7, 8], dtype='int64')}
In [145]: df.A.groupby((df.A != df.A.shift()).cumsum()).cumsum()
Out[145]:
0 0
1 1
2 0
3 1
4 2
5 3
6 0
7 1
8 2
Name: A, dtype: int64
# Expanding data
Alignment and to-date (opens new window)
Rolling Computation window based on values instead of counts (opens new window)
Rolling Mean by Time Interval (opens new window)
# Splitting
Splitting a frame (opens new window)
Create a list of dataframes, split using a delineation based on logic included in rows.
In [146]: df = pd.DataFrame(data={'Case': ['A', 'A', 'A', 'B', 'A', 'A', 'B', 'A',
.....: 'A'],
.....: 'Data': np.random.randn(9)})
.....:
In [147]: dfs = list(zip(*df.groupby((1 * (df['Case'] == 'B')).cumsum()
.....: .rolling(window=3, min_periods=1).median())))[-1]
.....:
In [148]: dfs[0]
Out[148]:
Case Data
0 A 0.276232
1 A -1.087401
2 A -0.673690
3 B 0.113648
In [149]: dfs[1]
Out[149]:
Case Data
4 A -1.478427
5 A 0.524988
6 B 0.404705
In [150]: dfs[2]
Out[150]:
Case Data
7 A 0.577046
8 A -1.715002
# Pivot
The Pivot docs.
Partial sums and subtotals (opens new window)
In [151]: df = pd.DataFrame(data={'Province': ['ON', 'QC', 'BC', 'AL', 'AL', 'MN', 'ON'],
.....: 'City': ['Toronto', 'Montreal', 'Vancouver',
.....: 'Calgary', 'Edmonton', 'Winnipeg',
.....: 'Windsor'],
.....: 'Sales': [13, 6, 16, 8, 4, 3, 1]})
.....:
In [152]: table = pd.pivot_table(df, values=['Sales'], index=['Province'],
.....: columns=['City'], aggfunc=np.sum, margins=True)
.....:
In [153]: table.stack('City')
Out[153]:
Sales
Province City
AL All 12.0
Calgary 8.0
Edmonton 4.0
BC All 16.0
Vancouver 16.0
... ...
All Montreal 6.0
Toronto 13.0
Vancouver 16.0
Windsor 1.0
Winnipeg 3.0
[20 rows x 1 columns]
Frequency table like plyr in R (opens new window)
In [154]: grades = [48, 99, 75, 80, 42, 80, 72, 68, 36, 78]
In [155]: df = pd.DataFrame({'ID': ["x%d" % r for r in range(10)],
.....: 'Gender': ['F', 'M', 'F', 'M', 'F',
.....: 'M', 'F', 'M', 'M', 'M'],
.....: 'ExamYear': ['2007', '2007', '2007', '2008', '2008',
.....: '2008', '2008', '2009', '2009', '2009'],
.....: 'Class': ['algebra', 'stats', 'bio', 'algebra',
.....: 'algebra', 'stats', 'stats', 'algebra',
.....: 'bio', 'bio'],
.....: 'Participated': ['yes', 'yes', 'yes', 'yes', 'no',
.....: 'yes', 'yes', 'yes', 'yes', 'yes'],
.....: 'Passed': ['yes' if x > 50 else 'no' for x in grades],
.....: 'Employed': [True, True, True, False,
.....: False, False, False, True, True, False],
.....: 'Grade': grades})
.....:
In [156]: df.groupby('ExamYear').agg({'Participated': lambda x: x.value_counts()['yes'],
.....: 'Passed': lambda x: sum(x == 'yes'),
.....: 'Employed': lambda x: sum(x),
.....: 'Grade': lambda x: sum(x) / len(x)})
.....:
Out[156]:
Participated Passed Employed Grade
ExamYear
2007 3 2 3 74.000000
2008 3 3 0 68.500000
2009 3 2 2 60.666667
Plot pandas DataFrame with year over year data (opens new window)
To create year and month cross tabulation:
In [157]: df = pd.DataFrame({'value': np.random.randn(36)},
.....: index=pd.date_range('2011-01-01', freq='M', periods=36))
.....:
In [158]: pd.pivot_table(df, index=df.index.month, columns=df.index.year,
.....: values='value', aggfunc='sum')
.....:
Out[158]:
2011 2012 2013
1 -1.039268 -0.968914 2.565646
2 -0.370647 -1.294524 1.431256
3 -1.157892 0.413738 1.340309
4 -1.344312 0.276662 -1.170299
5 0.844885 -0.472035 -0.226169
6 1.075770 -0.013960 0.410835
7 -0.109050 -0.362543 0.813850
8 1.643563 -0.006154 0.132003
9 -1.469388 -0.923061 -0.827317
10 0.357021 0.895717 -0.076467
11 -0.674600 0.805244 -1.187678
12 -1.776904 -1.206412 1.130127
# Apply
Rolling apply to organize - Turning embedded lists into a MultiIndex frame (opens new window)
In [159]: df = pd.DataFrame(data={'A': [[2, 4, 8, 16], [100, 200], [10, 20, 30]],
.....: 'B': [['a', 'b', 'c'], ['jj', 'kk'], ['ccc']]},
.....: index=['I', 'II', 'III'])
.....:
In [160]: def SeriesFromSubList(aList):
.....: return pd.Series(aList)
.....:
In [161]: df_orgz = pd.concat({ind: row.apply(SeriesFromSubList)
.....: for ind, row in df.iterrows()})
.....:
In [162]: df_orgz
Out[162]:
0 1 2 3
I A 2 4 8 16.0
B a b c NaN
II A 100 200 NaN NaN
B jj kk NaN NaN
III A 10 20 30 NaN
B ccc NaN NaN NaN
Rolling apply with a DataFrame returning a Series (opens new window)
Rolling Apply to multiple columns where function calculates a Series before a Scalar from the Series is returned
In [163]: df = pd.DataFrame(data=np.random.randn(2000, 2) / 10000,
.....: index=pd.date_range('2001-01-01', periods=2000),
.....: columns=['A', 'B'])
.....:
In [164]: df
Out[164]:
A B
2001-01-01 -0.000144 -0.000141
2001-01-02 0.000161 0.000102
2001-01-03 0.000057 0.000088
2001-01-04 -0.000221 0.000097
2001-01-05 -0.000201 -0.000041
... ... ...
2006-06-19 0.000040 -0.000235
2006-06-20 -0.000123 -0.000021
2006-06-21 -0.000113 0.000114
2006-06-22 0.000136 0.000109
2006-06-23 0.000027 0.000030
[2000 rows x 2 columns]
In [165]: def gm(df, const):
.....: v = ((((df.A + df.B) + 1).cumprod()) - 1) * const
.....: return v.iloc[-1]
.....:
In [166]: s = pd.Series({df.index[i]: gm(df.iloc[i:min(i + 51, len(df) - 1)], 5)
.....: for i in range(len(df) - 50)})
.....:
In [167]: s
Out[167]:
2001-01-01 0.000930
2001-01-02 0.002615
2001-01-03 0.001281
2001-01-04 0.001117
2001-01-05 0.002772
...
2006-04-30 0.003296
2006-05-01 0.002629
2006-05-02 0.002081
2006-05-03 0.004247
2006-05-04 0.003928
Length: 1950, dtype: float64
Rolling apply with a DataFrame returning a Scalar (opens new window)
Rolling Apply to multiple columns where function returns a Scalar (Volume Weighted Average Price)
In [168]: rng = pd.date_range(start='2014-01-01', periods=100)
In [169]: df = pd.DataFrame({'Open': np.random.randn(len(rng)),
.....: 'Close': np.random.randn(len(rng)),
.....: 'Volume': np.random.randint(100, 2000, len(rng))},
.....: index=rng)
.....:
In [170]: df
Out[170]:
Open Close Volume
2014-01-01 -1.611353 -0.492885 1219
2014-01-02 -3.000951 0.445794 1054
2014-01-03 -0.138359 -0.076081 1381
2014-01-04 0.301568 1.198259 1253
2014-01-05 0.276381 -0.669831 1728
... ... ... ...
2014-04-06 -0.040338 0.937843 1188
2014-04-07 0.359661 -0.285908 1864
2014-04-08 0.060978 1.714814 941
2014-04-09 1.759055 -0.455942 1065
2014-04-10 0.138185 -1.147008 1453
[100 rows x 3 columns]
In [171]: def vwap(bars):
.....: return ((bars.Close * bars.Volume).sum() / bars.Volume.sum())
.....:
In [172]: window = 5
In [173]: s = pd.concat([(pd.Series(vwap(df.iloc[i:i + window]),
.....: index=[df.index[i + window]]))
.....: for i in range(len(df) - window)])
.....:
In [174]: s.round(2)
Out[174]:
2014-01-06 0.02
2014-01-07 0.11
2014-01-08 0.10
2014-01-09 0.07
2014-01-10 -0.29
...
2014-04-06 -0.63
2014-04-07 -0.02
2014-04-08 -0.03
2014-04-09 0.34
2014-04-10 0.29
Length: 95, dtype: float64
# Timeseries
Between times (opens new window)
Using indexer between time (opens new window)
Vectorized Lookup (opens new window)
Aggregation and plotting time series (opens new window)
Turn a matrix with hours in columns and days in rows into a continuous row sequence in the form of a time series. How to rearrange a Python pandas DataFrame? (opens new window)
Dealing with duplicates when reindexing a timeseries to a specified frequency (opens new window)
Calculate the first day of the month for each entry in a DatetimeIndex
In [175]: dates = pd.date_range('2000-01-01', periods=5)
In [176]: dates.to_period(freq='M').to_timestamp()
Out[176]:
DatetimeIndex(['2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01',
'2000-01-01'],
dtype='datetime64[ns]', freq=None)
# Resampling
The Resample docs.
Using Grouper instead of TimeGrouper for time grouping of values (opens new window)
Time grouping with some missing values (opens new window)
Valid frequency arguments to Grouper (opens new window)
Grouping using a MultiIndex (opens new window)
Resampling with custom periods (opens new window)
Resample intraday frame without adding new days (opens new window)
Resample minute data (opens new window)
Resample with groupby (opens new window)
# Merge
The Concat docs. The Join docs.
Append two dataframes with overlapping index (emulate R rbind) (opens new window)
In [177]: rng = pd.date_range('2000-01-01', periods=6)
In [178]: df1 = pd.DataFrame(np.random.randn(6, 3), index=rng, columns=['A', 'B', 'C'])
In [179]: df2 = df1.copy()
Depending on df construction, ignore_index
may be needed
In [180]: df = df1.append(df2, ignore_index=True)
In [181]: df
Out[181]:
A B C
0 -0.870117 -0.479265 -0.790855
1 0.144817 1.726395 -0.464535
2 -0.821906 1.597605 0.187307
3 -0.128342 -1.511638 -0.289858
4 0.399194 -1.430030 -0.639760
5 1.115116 -2.012600 1.810662
6 -0.870117 -0.479265 -0.790855
7 0.144817 1.726395 -0.464535
8 -0.821906 1.597605 0.187307
9 -0.128342 -1.511638 -0.289858
10 0.399194 -1.430030 -0.639760
11 1.115116 -2.012600 1.810662
Self Join of a DataFrame (opens new window)
In [182]: df = pd.DataFrame(data={'Area': ['A'] * 5 + ['C'] * 2,
.....: 'Bins': [110] * 2 + [160] * 3 + [40] * 2,
.....: 'Test_0': [0, 1, 0, 1, 2, 0, 1],
.....: 'Data': np.random.randn(7)})
.....:
In [183]: df
Out[183]:
Area Bins Test_0 Data
0 A 110 0 -0.433937
1 A 110 1 -0.160552
2 A 160 0 0.744434
3 A 160 1 1.754213
4 A 160 2 0.000850
5 C 40 0 0.342243
6 C 40 1 1.070599
In [184]: df['Test_1'] = df['Test_0'] - 1
In [185]: pd.merge(df, df, left_on=['Bins', 'Area', 'Test_0'],
.....: right_on=['Bins', 'Area', 'Test_1'],
.....: suffixes=('_L', '_R'))
.....:
Out[185]:
Area Bins Test_0_L Data_L Test_1_L Test_0_R Data_R Test_1_R
0 A 110 0 -0.433937 -1 1 -0.160552 0
1 A 160 0 0.744434 -1 1 1.754213 0
2 A 160 1 1.754213 0 2 0.000850 1
3 C 40 0 0.342243 -1 1 1.070599 0
How to set the index and join (opens new window)
KDB like asof join (opens new window)
Join with a criteria based on the values (opens new window)
Using searchsorted to merge based on values inside a range (opens new window)
# Plotting
The Plotting docs.
Make Matplotlib look like R (opens new window)
Setting x-axis major and minor labels (opens new window)
Plotting multiple charts in an ipython notebook (opens new window)
Creating a multi-line plot (opens new window)
Plotting a heatmap (opens new window)
Annotate a time-series plot (opens new window)
Annotate a time-series plot #2 (opens new window)
Generate Embedded plots in excel files using Pandas, Vincent and xlsxwriter (opens new window)
Boxplot for each quartile of a stratifying variable (opens new window)
In [186]: df = pd.DataFrame(
.....: {'stratifying_var': np.random.uniform(0, 100, 20),
.....: 'price': np.random.normal(100, 5, 20)})
.....:
In [187]: df['quartiles'] = pd.qcut(
.....: df['stratifying_var'],
.....: 4,
.....: labels=['0-25%', '25-50%', '50-75%', '75-100%'])
.....:
In [188]: df.boxplot(column='price', by='quartiles')
Out[188]: <matplotlib.axes._subplots.AxesSubplot at 0x7f65f77e6470>
# Data In/Out
Performance comparison of SQL vs HDF5 (opens new window)
# CSV
The CSV docs
read_csv in action (opens new window)
appending to a csv (opens new window)
Reading a csv chunk-by-chunk (opens new window)
Reading only certain rows of a csv chunk-by-chunk (opens new window)
Reading the first few lines of a frame (opens new window)
Reading a file that is compressed but not by gzip/bz2
(the native compressed formats which read_csv
understands).
This example shows a WinZipped
file, but is a general application of opening the file within a context manager and
using that handle to read.
See here (opens new window)
Inferring dtypes from a file (opens new window)
Dealing with bad lines (opens new window)
Dealing with bad lines II (opens new window)
Reading CSV with Unix timestamps and converting to local timezone (opens new window)
Write a multi-row index CSV without writing duplicates (opens new window)
# Reading multiple files to create a single DataFrame
The best way to combine multiple files into a single DataFrame is to read the individual frames one by one, put all
of the individual frames into a list, and then combine the frames in the list using pd.concat()
:
In [189]: for i in range(3):
.....: data = pd.DataFrame(np.random.randn(10, 4))
.....: data.to_csv('file_{}.csv'.format(i))
.....:
In [190]: files = ['file_0.csv', 'file_1.csv', 'file_2.csv']
In [191]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)
You can use the same approach to read all files matching a pattern. Here is an example using glob
:
In [192]: import glob
In [193]: import os
In [194]: files = glob.glob('file_*.csv')
In [195]: result = pd.concat([pd.read_csv(f) for f in files], ignore_index=True)
Finally, this strategy will work with the other pd.read_*(...)
functions described in the io docs.
# Parsing date components in multi-columns
Parsing date components in multi-columns is faster with a format
In [196]: i = pd.date_range('20000101', periods=10000)
In [197]: df = pd.DataFrame({'year': i.year, 'month': i.month, 'day': i.day})
In [198]: df.head()
Out[198]:
year month day
0 2000 1 1
1 2000 1 2
2 2000 1 3
3 2000 1 4
4 2000 1 5
In [199]: %timeit pd.to_datetime(df.year * 10000 + df.month * 100 + df.day, format='%Y%m%d')
.....: ds = df.apply(lambda x: "%04d%02d%02d" % (x['year'],
.....: x['month'], x['day']), axis=1)
.....: ds.head()
.....: %timeit pd.to_datetime(ds)
.....:
9.36 ms +- 106 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
2.88 ms +- 34.5 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
# Skip row between header and data
In [200]: data = """;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: ;;;;
.....: date;Param1;Param2;Param4;Param5
.....: ;m²;°C;m²;m
.....: ;;;;
.....: 01.01.1990 00:00;1;1;2;3
.....: 01.01.1990 01:00;5;3;4;5
.....: 01.01.1990 02:00;9;5;6;7
.....: 01.01.1990 03:00;13;7;8;9
.....: 01.01.1990 04:00;17;9;10;11
.....: 01.01.1990 05:00;21;11;12;13
.....: """
.....:
# Option 1: pass rows explicitly to skip rows
In [201]: from io import StringIO
In [202]: pd.read_csv(StringIO(data), sep=';', skiprows=[11, 12],
.....: index_col=0, parse_dates=True, header=10)
.....:
Out[202]:
Param1 Param2 Param4 Param5
date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13
# Option 2: read column names and then data
In [203]: pd.read_csv(StringIO(data), sep=';', header=10, nrows=10).columns
Out[203]: Index(['date', 'Param1', 'Param2', 'Param4', 'Param5'], dtype='object')
In [204]: columns = pd.read_csv(StringIO(data), sep=';', header=10, nrows=10).columns
In [205]: pd.read_csv(StringIO(data), sep=';', index_col=0,
.....: header=12, parse_dates=True, names=columns)
.....:
Out[205]:
Param1 Param2 Param4 Param5
date
1990-01-01 00:00:00 1 1 2 3
1990-01-01 01:00:00 5 3 4 5
1990-01-01 02:00:00 9 5 6 7
1990-01-01 03:00:00 13 7 8 9
1990-01-01 04:00:00 17 9 10 11
1990-01-01 05:00:00 21 11 12 13
# SQL
The SQL docs
Reading from databases with SQL (opens new window)
# Excel
The Excel docs
Reading from a filelike handle (opens new window)
Modifying formatting in XlsxWriter output (opens new window)
# HTML
Reading HTML tables from a server that cannot handle the default request header (opens new window)
# HDFStore
The HDFStores docs
Simple queries with a Timestamp Index (opens new window)
Managing heterogeneous data using a linked multiple table hierarchy (opens new window)
Merging on-disk tables with millions of rows (opens new window)
Avoiding inconsistencies when writing to a store from multiple processes/threads (opens new window)
De-duplicating a large store by chunks, essentially a recursive reduction operation. Shows a function for taking in data from csv file and creating a store by chunks, with date parsing as well. See here (opens new window)
Creating a store chunk-by-chunk from a csv file (opens new window)
Appending to a store, while creating a unique index (opens new window)
Large Data work flows (opens new window)
Groupby on a HDFStore with low group density (opens new window)
Groupby on a HDFStore with high group density (opens new window)
Hierarchical queries on a HDFStore (opens new window)
Counting with a HDFStore (opens new window)
Troubleshoot HDFStore exceptions (opens new window)
Setting min_itemsize with strings (opens new window)
Using ptrepack to create a completely-sorted-index on a store (opens new window)
Storing Attributes to a group node
In [206]: df = pd.DataFrame(np.random.randn(8, 3))
In [207]: store = pd.HDFStore('test.h5')
In [208]: store.put('df', df)
# you can store an arbitrary Python object via pickle
In [209]: store.get_storer('df').attrs.my_attribute = {'A': 10}
In [210]: store.get_storer('df').attrs.my_attribute
Out[210]: {'A': 10}
# Binary files
pandas readily accepts NumPy record arrays, if you need to read in a binary
file consisting of an array of C structs. For example, given this C program
in a file called main.c
compiled with gcc main.c -std=gnu99
on a
64-bit machine,
#include <stdio.h>
#include <stdint.h>
typedef struct _Data
{
int32_t count;
double avg;
float scale;
} Data;
int main(int argc, const char *argv[])
{
size_t n = 10;
Data d[n];
for (int i = 0; i < n; ++i)
{
d[i].count = i;
d[i].avg = i + 1.0;
d[i].scale = (float) i + 2.0f;
}
FILE *file = fopen("binary.dat", "wb");
fwrite(&d, sizeof(Data), n, file);
fclose(file);
return 0;
}
the following Python code will read the binary file 'binary.dat'
into a
pandas DataFrame
, where each element of the struct corresponds to a column
in the frame:
names = 'count', 'avg', 'scale'
# note that the offsets are larger than the size of the type because of
# struct padding
offsets = 0, 8, 16
formats = 'i4', 'f8', 'f4'
dt = np.dtype({'names': names, 'offsets': offsets, 'formats': formats},
align=True)
df = pd.DataFrame(np.fromfile('binary.dat', dt))
Note
The offsets of the structure elements may be different depending on the architecture of the machine on which the file was created. Using a raw binary file format like this for general data storage is not recommended, as it is not cross platform. We recommended either HDF5 or msgpack, both of which are supported by pandas’ IO facilities.
# Computation
Numerical integration (sample-based) of a time series (opens new window)
# Correlation
Often it’s useful to obtain the lower (or upper) triangular form of a correlation matrix calculated from DataFrame.corr()
(opens new window). This can be achieved by passing a boolean mask to where
as follows:
In [211]: df = pd.DataFrame(np.random.random(size=(100, 5)))
In [212]: corr_mat = df.corr()
In [213]: mask = np.tril(np.ones_like(corr_mat, dtype=np.bool), k=-1)
In [214]: corr_mat.where(mask)
Out[214]:
0 1 2 3 4
0 NaN NaN NaN NaN NaN
1 -0.018923 NaN NaN NaN NaN
2 -0.076296 -0.012464 NaN NaN NaN
3 -0.169941 -0.289416 0.076462 NaN NaN
4 0.064326 0.018759 -0.084140 -0.079859 NaN
The method argument within DataFrame.corr can accept a callable in addition to the named correlation types. Here we compute the distance correlation (opens new window) matrix for a DataFrame object.
In [215]: def distcorr(x, y):
.....: n = len(x)
.....: a = np.zeros(shape=(n, n))
.....: b = np.zeros(shape=(n, n))
.....: for i in range(n):
.....: for j in range(i + 1, n):
.....: a[i, j] = abs(x[i] - x[j])
.....: b[i, j] = abs(y[i] - y[j])
.....: a += a.T
.....: b += b.T
.....: a_bar = np.vstack([np.nanmean(a, axis=0)] * n)
.....: b_bar = np.vstack([np.nanmean(b, axis=0)] * n)
.....: A = a - a_bar - a_bar.T + np.full(shape=(n, n), fill_value=a_bar.mean())
.....: B = b - b_bar - b_bar.T + np.full(shape=(n, n), fill_value=b_bar.mean())
.....: cov_ab = np.sqrt(np.nansum(A * B)) / n
.....: std_a = np.sqrt(np.sqrt(np.nansum(A**2)) / n)
.....: std_b = np.sqrt(np.sqrt(np.nansum(B**2)) / n)
.....: return cov_ab / std_a / std_b
.....:
In [216]: df = pd.DataFrame(np.random.normal(size=(100, 3)))
In [217]: df.corr(method=distcorr)
Out[217]:
0 1 2
0 1.000000 0.199653 0.214871
1 0.199653 1.000000 0.195116
2 0.214871 0.195116 1.000000
# Timedeltas
The Timedeltas docs.
Using timedeltas (opens new window)
In [218]: import datetime
In [219]: s = pd.Series(pd.date_range('2012-1-1', periods=3, freq='D'))
In [220]: s - s.max()
Out[220]:
0 -2 days
1 -1 days
2 0 days
dtype: timedelta64[ns]
In [221]: s.max() - s
Out[221]:
0 2 days
1 1 days
2 0 days
dtype: timedelta64[ns]
In [222]: s - datetime.datetime(2011, 1, 1, 3, 5)
Out[222]:
0 364 days 20:55:00
1 365 days 20:55:00
2 366 days 20:55:00
dtype: timedelta64[ns]
In [223]: s + datetime.timedelta(minutes=5)
Out[223]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]
In [224]: datetime.datetime(2011, 1, 1, 3, 5) - s
Out[224]:
0 -365 days +03:05:00
1 -366 days +03:05:00
2 -367 days +03:05:00
dtype: timedelta64[ns]
In [225]: datetime.timedelta(minutes=5) + s
Out[225]:
0 2012-01-01 00:05:00
1 2012-01-02 00:05:00
2 2012-01-03 00:05:00
dtype: datetime64[ns]
Adding and subtracting deltas and dates (opens new window)
In [226]: deltas = pd.Series([datetime.timedelta(days=i) for i in range(3)])
In [227]: df = pd.DataFrame({'A': s, 'B': deltas})
In [228]: df
Out[228]:
A B
0 2012-01-01 0 days
1 2012-01-02 1 days
2 2012-01-03 2 days
In [229]: df['New Dates'] = df['A'] + df['B']
In [230]: df['Delta'] = df['A'] - df['New Dates']
In [231]: df
Out[231]:
A B New Dates Delta
0 2012-01-01 0 days 2012-01-01 0 days
1 2012-01-02 1 days 2012-01-03 -1 days
2 2012-01-03 2 days 2012-01-05 -2 days
In [232]: df.dtypes
Out[232]:
A datetime64[ns]
B timedelta64[ns]
New Dates datetime64[ns]
Delta timedelta64[ns]
dtype: object
Another example (opens new window)
Values can be set to NaT using np.nan, similar to datetime
In [233]: y = s - s.shift()
In [234]: y
Out[234]:
0 NaT
1 1 days
2 1 days
dtype: timedelta64[ns]
In [235]: y[1] = np.nan
In [236]: y
Out[236]:
0 NaT
1 NaT
2 1 days
dtype: timedelta64[ns]
# Aliasing axis names
To globally provide aliases for axis names, one can define these 2 functions:
In [237]: def set_axis_alias(cls, axis, alias):
.....: if axis not in cls._AXIS_NUMBERS:
.....: raise Exception("invalid axis [%s] for alias [%s]" % (axis, alias))
.....: cls._AXIS_ALIASES[alias] = axis
.....:
In [238]: def clear_axis_alias(cls, axis, alias):
.....: if axis not in cls._AXIS_NUMBERS:
.....: raise Exception("invalid axis [%s] for alias [%s]" % (axis, alias))
.....: cls._AXIS_ALIASES.pop(alias, None)
.....:
In [239]: set_axis_alias(pd.DataFrame, 'columns', 'myaxis2')
In [240]: df2 = pd.DataFrame(np.random.randn(3, 2), columns=['c1', 'c2'],
.....: index=['i1', 'i2', 'i3'])
.....:
In [241]: df2.sum(axis='myaxis2')
Out[241]:
i1 -0.461013
i2 2.040016
i3 0.904681
dtype: float64
In [242]: clear_axis_alias(pd.DataFrame, 'columns', 'myaxis2')
# Creating example data
To create a dataframe from every combination of some given values, like R’s expand.grid()
function, we can create a dict where the keys are column names and the values are lists
of the data values:
In [243]: def expand_grid(data_dict):
.....: rows = itertools.product(*data_dict.values())
.....: return pd.DataFrame.from_records(rows, columns=data_dict.keys())
.....:
In [244]: df = expand_grid({'height': [60, 70],
.....: 'weight': [100, 140, 180],
.....: 'sex': ['Male', 'Female']})
.....:
In [245]: df
Out[245]:
height weight sex
0 60 100 Male
1 60 100 Female
2 60 140 Male
3 60 140 Female
4 60 180 Male
5 60 180 Female
6 70 100 Male
7 70 100 Female
8 70 140 Male
9 70 140 Female
10 70 180 Male
11 70 180 Female